PREDIKSI HASIL PEMILU LEGISLATIF MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR BERBASIS BACKWARD ELIMINATION

  • Achmad Saiful Rizal Universitas Yudharta Pasuruan
  • Moch. Lutfi Universitas Yudharta Pasuruan
Keywords: Pemilu, K-Nearest Neighbor, Backward Elimination

Abstract

Elections in Indonesia from period to period have undergone some changes. Elections legislative candidates not determined voters, but instead became a political elite authority in accordance with the order of the list of legislative candidates and their number sequence. To perform a prediction one of them with data mining. Data mining can be applied in the political sphere for example to predict the results of the legislative election and others. K-nearest neighbor algorithm is one of the data mining algorithm that performs classification based on learning object against which are closest to the object. Election-related research has been done with the k-nearest neighbor algorithm, but accuracy is obtained that method is still too low, so it takes an additional algorithm to improve accuracy. In this study, the proposed method, namely the method of k-nearest neighbor method combined with backward elimination as a selection of features. The dataset that will be used in the study comes from the KPU Sidoarjo that has special attributes 1 and 13 regular attributes. From the results of the analysis and computation of some methods, it can be concluded that the method of k-nearest neighbor method combined with backward elimination produced some conclusions. First, of the 14 attributes in the dataset, retrieved 8 most influential attribute. Second, the best accuracy are of 96.03% when k = 2 and tested by 10 fold cross validation.

Downloads

Download data is not yet available.

References

DPR RI, “Undang-Undang Republik Indonesia Nomor 10,” 2008.

Eviciana dan Hilda Amalia, “Algoritma C4.5 Untuk Prediksi Hasil Pemilihan Legislatif DPRD DKI Jakarta,” Thecno Nusa Mandiri, vol. IX, no. 1, pp. 48–56, 2013.

Diana Tri Wahyuni, T. Sutojo, dan Ardytha. Luthfiarta, “Prediksi Hasil Pemilu Legislatif DKI Jakarta Menggunakan Naïve Bayes Dengan Algoritma Genetika Sebagai Fitur Seleksi,” UDINUS, 2004.

Mohammad Badrul, “Penerapan Metode Neural Network Untuk Memprediksi Hasil Pemilu Legislatif,” Techno Nusa Mandiri, vol. X, no. 2, pp. 21–32, 2013.

Mohammad Badrul, “Prediksi Hasil Pemilu Legislatif Dengan Menggunakan Algoritma K-Nearest Neighbor,” Pilar Nusa Mandiri, vol. XI, no. 2, pp. 152–160, 2015.

Mehdi Moradian and Ahmad Baraani, “KNNBA : K-Nearest Neighbor Based Association Algorithm,” Theoretical and Applied Information Technology., 2009.

Laily Hermawati, “Penggabungan Algoritma Backward Elimination dan Naive Bayes Untuk Mendiagnosis Penyakit Kanker Payudara,” Momentum, vol. 11, no. 1, pp. 42–45, 2015.

Laily Hermawati dan S. G. Rabiha, “Penggabungan Algoritma Backward Elimination dan K-Nearest Neighbor Untuk Mendiagnosis Penyakit Jantung,” Proceedings. SNST, pp. 184–189, 2014.

Alfin D. Bagja, G. Abdillah, dan F. Renaldi, “Penerapan Data Mining Dalam Menentukan Potensi Keberhasilan Bakal Calon Legislatif di Daerah Pemilihan Jawa Barat Menggunakan Algoritma k-Nearest Neighbors,” Proceedings. SNST, pp. 184–189, 2016.

James I. Luke dan Suharjito, “Data Mining Tweet Promosi Produk dan Jasa Secara Otomatis dengan Menggunakan Algoritma Naive Bayes untuk Meningkatkan Engagement Followers Twitter,” Binus University., 2015.

Zenon Gniazdowski and Michal Grabowski, “Numerical Coding of Nominal Data,” Zeszyty Naukowe WWSI, vol. 9, no. 12, pp. 53–61, 2015.

Ratih Sari Wardani dan Purwanto, “Model Pengambilan Keputusan Dalam Prediksi Kasus Tuberkulosis Menggunakan Regresi Logistik Berbasis Backward Elimination,” Universitas Muhammadiyah Semarang, 2014.

Dewinta Aryanie and Yaya Heryadi, “American Sign Language Based Finger Spelling Recognition Using K-Nearest Neighbors Classifier,” Program Studi Sistem Informasi Fakultas Sains dan Teknologi UIN Jakarta, pp. 533–536, 2015.

Sudjana, Statika Untuk Ekonomi dan Niaga, vol. 2. Tarsito, Bandung, 1993.

Ron Kohavi, “A Study of Cross Validation and Bootstrap for Accuracy Estimation and Model Selection,” International Joint Conference on Artificial Intelligence, vol. 14, no. 12, pp. 1137–1143, 1995.

Muhammad Banda Selamat, “Pembobotan Parameter dan Penentuan Keputusan,” Jurusan Ilmu Kelautan FIKP UH, vol. IV, pp. 38–49, 2002.

Published
2020-04-17
How to Cite
Achmad Saiful Rizal, & Moch. Lutfi. (2020). PREDIKSI HASIL PEMILU LEGISLATIF MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR BERBASIS BACKWARD ELIMINATION . Jurnal RESISTOR (Rekayasa Sistem Komputer), 3(1), 27-41. https://doi.org/10.31598/jurnalresistor.v3i1.517
Abstract viewed = 31 times
FULL TEXT downloaded = 17 times