ANALISA METODE CLASSIFICATION-DECISSION TREE DAN ALGORITMA C.45 UNTUK MEMPREDIKSI PENYAKIT DIABETES DENGAN MENGGUNAKAN APLIKASI RAPID MINER

  • Febie Elfaladonna APTIKOM
  • Ayu Rahmadani Universitas Putra Indonesia-YPTK Padang, Indonesia
Keywords: Data mining, Classification Methods, Algorithm C. 45, Diabetes

Abstract

Diabetes disease is a degenerative disease that each year the presentation of its victims are always increasing. Ignorance of lay people to predict the likelihood of the disease either from a derivative or derivatives is still not a bit. These things affect the level of vigilance sufferers against things that can trigger diabetes getting worse. Classification of research aims to form model decision tree in order for handling derivative-based diabetes disease are increasingly easy to do. To generate new information then used calculation algorithm c. 45 and testing algorithms that use application rapid miner would further reinforce the decision. The research on testing using multiple attribute classification i.e. the attribute weight, gender, blood pressure, blood sugar levels, and a history of diabetes. All of these attributes will be used as reference in search results so that sufferers can predict whether diabetes is the diabetes disease suffered a derivative or derivatives not

Downloads

Download data is not yet available.

References

Budi Santosa, 2007. Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta. Graha Ilmu.

Bustami, 2013. Penerapan Algoritma Naive Bayes Untuk Mengklasifikasi Data Nasabah Asuransi. Jurnal Penelitian IJNS – Indonesian Journal on Networking and Security - Volume 5 No 1 – 2016 – ijns.org ISSN : 1979‐9330 (Print) ‐ 2088‐0154 (Online) 54 Teknik Informatika (TECHSI) Vol. 2: 2, 127-146, 2013.

Gambbeta, Windy. 2012. Pohon Keputusan (Decision Tree). Departemen Teknik Informatika. Institute Teknologi Bandung. Bandung.

Iwan Santosa, dkk. 2018. Implementasi Algoritma Decision Tree C.45 Untuk Diagnosa penyakit Tubercolusis (TB). Jurnal Ilmiah Nero Vol.3, No 3. Program Studi Teknik Informatika. Universitas Trunojoyo Madura.

Jiawei Han and Micheline Kamber Simon Fraser, 2000. Data Mining: Concepts and Techniques.Morgan Kaufmann Publishers. All rights reserved.

Larose D, T., 2006, Data Mining Methods and Models, Jhon Wiley & Sons, Inc. Hoboken New Jersey.

Obbie Kristanto, 2015. Penerapan Algoritma Klasifikasi Data Mining Id3 Untuk Menentukan Penjurusan Siswa SMAN 6 Semarang. Jurusan Teknik Informatika. Universitas Dian Nuswantoro. Semarang.

Pramudiono, I. 2006. Apa itu Data Mining. Dalam http://datamining.japati.net/cgibin, diakses tanggal 16 september 2017. ISSN : 2548-964X. http://jptiik.ub.ac.id. Program Studi Teknik Informatika. Fakultas Ilmu Komputer. Universitas Brawijaya

Rizky Haqmanullah Pambudi, dkk. Penerapan Algoritma C.45 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol.2, No. 7, Juli 2018, hlm 2637-2643.

Turban, E. et al, 2005. Decision Support Systems and Intelligent Systems (Sistem Pendukung Keputusan dan Sistem Cerdas). Andi Offset. Yogyakarta

Wu Xindong et al. Top 10 Algorithms in Data Mining. Di dalam: Knowledge Information System. Vol. 14. London: Springer; 2008. hlm. 1-37

Published
2019-04-21
How to Cite
[1]
F. Elfaladonna and A. Rahmadani, “ANALISA METODE CLASSIFICATION-DECISSION TREE DAN ALGORITMA C.45 UNTUK MEMPREDIKSI PENYAKIT DIABETES DENGAN MENGGUNAKAN APLIKASI RAPID MINER”, SINTECH Journal, vol. 2, no. 1, pp. 10-17, Apr. 2019.
Abstract viewed = 116 times
FULL TEXT downloaded = 139 times